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2 EAS 3.7 – Integration

This achievement standard involves applying integration methods in solving problems.

◆ 	 This achievement standard is derived from Level 8 of The New Zealand Curriculum and is related to 	
	 the achievement objectives:
	 ❖ 	 choose and apply a variety of integration and anti-differentiation techniques to functions 		
	 	 and relations using both analytical and numerical methods	 	 	 	 	
	 ❖ 	 form differential equations and interpret the solutions	 	 	 	 	 	
	 in the Mathematics strand of the Mathematics and Statistics Learning Area.	

◆	 Apply integration methods in solving problems involves:
	 ❖ 	 selecting and using methods
	 ❖ 	 demonstrating knowledge of concepts and terms	 	 	 	 	 	
	 ❖ 	 communicating using appropriate representations.

◆	 Relational thinking involves one or more of:
	 ❖ 	 selecting and carrying out a logical sequence of steps

	 ❖	 connecting different concepts or representations	
	 ❖ 	 demonstrating understanding of concepts	
	 ❖ 	 forming and using a model;	
	 and relating findings to a context, or communicating thinking using appropriate mathematical 	 	
	 statements.

 ◆ 	 Extended abstract thinking involves one or more of:
	 ❖ 	 devising a strategy to investigate or solve a problem

	 ❖ 	 identifying relevant concepts in context	
	 ❖ 	 developing a chain of logical reasoning, or proof	
	 ❖ 	 forming a generalisation;	
	 and using correct mathematical statements, or communicating mathematical insight.

◆	 Problems are situations that provide opportunities to apply knowledge or understanding of 	 	
	 mathematical concepts and methods.  Situations will be set in real-life or mathematical contexts.

◆	 Methods include a selection from those related to:	 	
	 ❖ 	 integrating power, polynomial, exponential (base e only), trigonometric, and rational 	 	
	 	 functions 
	 ❖ 	 reverse chain rule, trigonometric formulae
	 ❖ 	 rates of change problems
	 ❖ 	 areas under or between graphs of functions, by integration
	 ❖ 	 finding areas using numerical methods, e.g. the rectangle or trapezium rule

	 ❖ 	 differential equations of the forms y' = f(x) or y" = f(x) for the above functions or situations 	
	 	 where the variables are separable (e.g. y' = ky) in applications such as growth and decay, 		
	 	 inflation, Newton's Law of Cooling and similar situations.

Achievement Achievement with Merit Achievement with Excellence
•	 Apply integration methods in 

solving problems.
•	 Apply integration methods, 

using relational thinking, in 
solving problems.

•	 Apply integration methods, 	
using extended abstract 	
thinking, in solving problems.

Integration 3.7
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Integration of Polynomials

Integration of Polynomials
Integration is the reverse process of differentiation 
and is also called antidifferentiation.  
To integrate a polynomial we do so term-by-term 
using the rule:
Increase the power of the term by one and then divide by 
the new power.

We can write this as

	 kxn dx∫ 	 = 
k
n +1

xn+1  + C
	 	 	

To integrate a polynomial we must ensure each term 
of the expression is in the form kxn.

The symbol ∫ is used to denote the integral and dx 
tells us which variable we are finding the integral of.

1. Increase the 	
    power by one.

2. Divide by the 	
    new power.

3. Add a new 	
    constant C.

Polynomial
A polynomial is a mathematical  
expression comprising a sum of 
terms where each term includes a 

variable raised to a power and multiplied by a 
coefficient, e.g. 2x3 + 3x2 – 4x + 1.

Integrate the expression

I = 12x3 – 6x + 3 – 6 x∫ + 3
x2
dx

We begin by rewriting all the terms in 
the expression in the form kxn.

	 I = 12x3 – 6x + 3 – 6x1/2∫ + 3x–2dx

 Integrating term-by-term

	 12x3	 becomes	 12x3+1

4
	 = 3x4

	 – 6x	 becomes	
– 6x1+1

2
	 = – 3x2

	    3	 becomes 	 3x0+1

1
	 = 3x

 	 – 6x1/2  	becomes 	
– 6x

1
2
+1

1
2
+1

	 = 
– 6x3/2
3
2

	 = – 4x3/2

and	   3x–2	 becomes	 3x
– 2+1

–1
	 = – 3x–1

so
	 I = 12x3 – 6x + 3 – 6x1/2∫ + 3x–2dx
becomes
	 I = 3x4 – 3x2 + 3x – 4x3/2 – 3x–1 + C 

	   = 3x4 – 3x2 + 3x – 4 x3 –
3
x
+C

Example 

Constant of Integration 
When we differentiate any function 
any constants (e.g. 5) differentiates 
to 0.  Therefore, when we are doing 

the reverse and integrating it is not possible 
to identify a constant in the resulting integral.  
Demonstrating this
If	 f(x) = 4x6 – 3x + 5
	 f’(x) = 24x5 – 3
If we now integrate f’(x) to recover f(x) we no 
longer have the information needed to recover 
the constant 5.
To get around this problem, when integrating 
an expression, we always add a constant C at the 
end of the integral.

Integration of x–1

The given integration rule cannot 
be used to integrate x–1, because 
increasing the power of x by one 

and dividing by the new power would result in 
1
0

 which is undefined.  We need to use another 

approach to integrate 1
x

, see Page 11.

Find A(x+1)2 dx∫

Example 

We begin by putting the constant, A 
in front of the integral sign before we 
integrate.

= =A (x+1)2 dx∫
= A (x+1)(x+1)dx∫
= A x2+ 2x+1dx∫
= A(x

3

3
+
2x2

2
+x)+C

= A(x
3

3
+x2+x)+C

For the example above we could 
have expressed the constant as AC, 
because A is a multiplier for the 
entire integral, but as the constant of 

integration is an unknown constant, AC is also 
an unknown constant, so we just represent it 
with C.
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34 EAS 3.7 – Integration

Find the area between the curve f(x) = x3 – 4x2 – x + 4 
and the line g(x) = 4 – x from x = 0 to x = 4.

Find the area between the curve	
f(x) = 2x3 + 3x2 – 5x – 6 and the x axis from 	
x = –2 to x = 1.

	 Area	 = Area above + Area below	

	 Area	 = 2x3 + 3x2 – 5x – 6 dx +
– 2

–1

∫

	 	               	  2x3 + 3x2 – 5x – 6 dx
– 1

1

	 Area 	= 
2
4
x4 + x3 – 5

2
x2 – 6x⎡

⎣⎢
⎤
⎦⎥ – 2

–1

+

	 	 	            
2
4
x4 + x3 – 5

2
x2 – 6x⎡

⎣⎢
⎤
⎦⎥ –1

1

	 	= 
1
2
–1 – 5

2
+ 6⎛

⎝⎜
⎞
⎠⎟
– 16

2
– 8 – 20

2
+12⎛

⎝⎜
⎞
⎠⎟
+

	 	 	
1
2
+1 – 5

2
– 6

⎛
⎝⎜

⎞
⎠⎟
–
1
2
–1 –

5
2
+ 6⎛

⎝⎜
⎞
⎠⎟

	 	= 3 – 2 +|–7 – 3|

	 	= 1 + 10

	 	= 11 units2

f(x)

x1
4

g(x)

–1

4

-1-

f(x)

x
1

2

ExampleExample

Although the curve is above and below 
the x axes we are only interested in the 
enclosed area.

If we let 	 D(x) = g(x) – f(x)

then as g(x) is always above f(x) from x = 0 to x = 4 
then D(x) is positive in this region.

Therefore we can integrate it to find the area 
enclosed.

	 Area	 = D(x)dx
0

4

∫

	 	 =
 
g(x)− f(x)dx

0

4

∫

	 	 =
 
(4−x)−(x3−4x2−x+ 4)dx

0

4

∫

	 	 =
 

−x3+ 4x2 dx
0

4

∫

	 	 = 
−x4
4 +

4
3 x

3⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
0

4

	 	 = 2113  
units2

It is important we set D(x) equal to the 
higher expression (g(x) minus the lower 
expression f(x)) over the range otherwise 
the integral would be negative.
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For displacement:
s(0) 	 gives the initial displacement of the object 	

(t = 0).
s = 0 	 is used to solve for the time(s) t when the 

object is at the reference point.
For velocity:
v(0)	 gives the initial velocity of the object (t = 0).
v = 0	 is used to solve for the time t when the 

object is momentarily at rest.
v > 0	 the object is travelling away from the start.
v < 0	 the object is travelling back to (towards) the 

start.
For acceleration:
a(0)	 gives the object’s initial acceleration.
a = 0	 is used to solve for the time t when the 

object is not accelerating (speed or velocity is 
constant).

a < 0	 the object is slowing down.
a > 0	 the object is speeding up.

Rates of Change – Kinematics

Rates of Change

Application problems that involve functions of 
time, i.e. displacement, velocity and acceleration 
can be solved using calculus techniques.
Since differentiation gives us the instantaneous rate 
of change we can use it to find the rate of change of 
different expressions.
Displacement is the distance in a particular 
direction.  The rate of change of displacement 
is velocity and the rate of change of velocity is 
acceleration.
If we want to form a velocity function from a 
displacement function we differentiate.  If we want 
to form a displacement function from a velocity 
function we integrate.
The same applies to velocity and acceleration.

	
For example, if we have the velocity function of a 
ball thrown vertically upwards 
	 v(t) = 24 – 10t  m/s
The displacement function for this ball is
	 s(t) = ∫ v(t) dt
	 s(t) = ∫ 24 – 10t dt
	 s(t) = 24t – 5t2 + C  m
where C is the displacement at time t = 0.
Similarly, if we had the same velocity function 
and we wanted the acceleration function we 
differentiate
	 v(t) = 24 – 10t
	 a(t) = –10  m/s2

Units for Velocity and Acceleration
If the units for displacement are metres 
and time is measured in seconds, then 

the units for velocity are metres per second (m/s) 
and the units for acceleration are metres per second 
squared (m/s2).

Velocity and Speed
The correct term for the rate at which 
displacement changes is velocity.  

Speed is just a measure of how quickly distance 
is changing and does not take into account the 
direction.

Look out for these key words
At ‘rest’ means velocity is zero (v(t) = 0).
Constant speed means no acceleration,  
a(t) = 0.

Maximum (or minimum) displacement means the 
object has momentarily stopped and is about to head 
back.   The velocity is always zero (v(t) = 0) when the 
distance is a maximum (or minimum).
Initial position or velocity is when t = 0.

Displacement function s(t)

Acceleration function a(t)

Velocity function v(t)

Differentiate

Differentiate

Integrate

Integrate
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n xn y0 + yn yOdd yEven

0 0 0

1 0.5 1.25

2 1.0 3.00

3 1.5 5.25

4 2.0 8.00

5 2.5 11.25

6 3.0 15.00

7 3.5 19.25

8 4.0 24.00

Sums 
of y

24.00 37.00 26.00

Simpson’s Rule cont...
Generalising the rule to cover n columns we get

( ) ... ...f x dx h y y y y y y y y1
3 4 2

a

b

n n n0 1 3 1 2 4 2= + + + + + + + ++- -^ ^h h7 A#

( ) ... ...f x dx h y y y y y y y y1
3 4 2

a

b

n n n0 1 3 1 2 4 2= + + + + + + + ++- -^ ^h h7 A#

where ( )h n
b a and y f xr r= - =  and n is even.

n must be even as the rule requires pairs of 
columns.

Using Simpson’s rule, find the area under the 
function f(x) = x(x + 2) between x = 0 and x = 4 
using eight subintervals.

	 h	 = b – a
n

	  	= 4 – 08
	  	= 0.5  
We calculate the required values in the table below.  
The table helps make sure we keep the first + last, 
even columns and odd columns separate.

Example 

	 Area	 = 
h
3 (y0 + y6 + 4yOdd + 2yEven)

	 	 = 0.53 (24 + 4 x 37 + 2 x 26)

	 	 = 37.33 units2

This is the same 
example as in the 
Trapezium rule.

n xn y0 + yn yOdd yEven

0 9 13.3

1 11 14.5

2 13 17.2

3 15 15.3

4 17 14.8

5 19 12.7

6 21 9.7

Sums 
of y

23.0 42.50 32.0

We need to know the cross-sectional area of a 
boat channel in a river.  The table has depth 
measurements from the shallow side of the river.  
The river flows down the boat channel at 	
4.3 m/s.  Use Simpson’s rule to calculate the cross-
sectional area and volume of water per second.

	 h	 = b – a
n

	  	= 21−96
	  	= 2.0 m  
Watch that you have a zigzag pattern in your table.

Example 

	 Area	 = 
h
3 (y0 + y6 + 4yOdd + 2yEven)

	 	 =
 
2
3 (23.0 + 4 x 42.5 + 2 x 32.0)

	 	 = 171.3 m2

	 Volume	 = area x rate of flow
	 	 = 736.6 m3/s

With Simpson’s 
rule n must be 
even.

x 9 11 13 15 17 19 21

Depth 
(y)

13.3 14.5 17.2 15.3 14.8 12.7 9.7

9 m 21 m
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Example
If the rate at which an investment in art 
appreciates depends upon the value of the piece 
of art

	 dP
dt 	

= iP

find the annual rate of appreciation of an 
artwork which was purchased for $12 500 and 
was valued at $14 300 five years later.

Assuming the rate of inflation is constant and it 
appreciates according to the differential equation, 

	 dP
dt 	

= iP

find the value (to 3 sf) of a house in January 2017 
if it was valued at $240 000 in January 1997 and   	
$620 000 in July 2008.

For 	 dP
dt 	

= iP

the general solution is  

	 P	= P0 eit      

Since P0 = 12 500 when t = 0

	 P	= 12 500eit

When t = 5, P = 14 300 so

	 14 300	= 12 500 e5i

Solving for i by dividing through by 12 500

	 e5i	= 1.144

Taking logs of both sides

	 ln(e5i)	= ln(1.144)

Since  ln(e5i) = 5i and ln(1.144) = 0.134 53

	 5i	= 0.134 53

	 i	= 0.0269	 (3 sf)

	 	= 2.7 % pa

For	 dP
dt

 	= iP

the general solution is

	 P	= P0 eit 

Let January 1997 be t = 0

	 240 000	=  P0 e0

	 P0 	= 240 000

so P0 becomes the initial value at t = 0.

In July 2008, t = 11.5 so 

	 620 000	= 240 000 e11.5i 

	 e11.5i 	= 
620 000
240 000

	Solving for i by taking logs of both sides

	 ln(e11.5i)	= ln(2.5833)

	 11.5i	=  0.949 081

	 i	=  0.082 529 (8.25%)

So in January 2017 when t = 20

	 P	=  240 000e0.082 529 x 20

	 P	= $1 250 000 (3 sf)

Example
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Page 20

99.	 ln|tan 2x| + C	
100.	 ln|cos 3x| + C
101.	 2ln|cosec 5x| + C	
102.		 2ln|7 – sin 4x| + C 
103.	 ln|ln|x|| + C
104.	 ln|e3x + 7| + C
105.	 2 ln|ex

2
 – 3| + C 

106.	 –ln cos x − π
4

⎛
⎝⎜

⎞
⎠⎟

 + C

107.	 ln|cos x + sin x| + C

108.	 1
2

ln|e2x + 2x| + C

Page 22

109.	 ∫	4(sin 6x + sin 4x) dx

		     = 
− 2
3

 cos 6x – cos 4x + C

110.	 ∫	4(sin 4x – sin 2x) dx

		     = –cos 4x + 2cos 2x + C

111.		 6sin 2x – 2sin 6x + C	

112.	 –0.4 cos 10x – 2 cos 2x + C

113.	 5
8

sin 8x + 5
2

sin 2x + C	

114.	
−3
22

cos 11x + 3
2

cos x + C   

Page 23

115.	 4tan x – 4x + C	

116.	 1
4

sin 2x + 1
2

x + C   

117.	 sin 2x + 2x + C

118.	 –20 cot x – 20x + C

119.	 1
2

sin 2x + C  OR
	 sin x cos x + C

120.	 2x – sin 2x + C  OR 
–2 sin x cos x + 2x + C

121.	 6x + 3sin 2x − π
3

⎛
⎝⎜

⎞
⎠⎟
 + C  Other

 	 forms of this answer possible.

122.	 –4cos 2x + 2π
5

⎛
⎝⎜

⎞
⎠⎟
 + C  Other 

	 forms of this answer possible

123.	 2x2 + 6x – 3
2

sin 4x + C

124.	 6x – 4 sin 2x + 1
2

sin 4x + C

Page 14 cont...

70.	 Ax
2

2
 + Bln|x| + D

x
 + C 

71.	 1
3

x3 – 3
2

x2 + 5 ln|x| + C

72.	 x5 + 2 ln|x|– 3
x

 + C

73.	 1
5

x5 + 1
6

x2 – 5
3

 ln|x| + C

74.	 ln|x| + B
Ax

+ C

Page 16

75.	 3x – 11ln|x + 1| + C

76.	 3x + 9ln|x – 2| + C 

77.	 2x – 7
4

ln|4x + 5| + C

78.	 3x + 18ln|x – 6| + C 

79.	 3x + 1
2

ln|2x – 1| + C 

80.	 –6x – 6 ln|1 – x| + C 

81.	 2x + 1
4

 ln|4x + 3| + C 

82.	 x
2

 + 1
2

ln|2x – 2| + C 

Page 17
83.	 2x – ln|x – 1| + C 
84.	 –3x + 13 ln|x + 4| + C 
85.	 x – 4 ln|2x + 3| + C 
86.	 3x + 4 ln|3 – 2x| + C 
87.	 4x + 8 ln|x – 2| + C 

88.	 x
3

 – 2
9

 ln|3x + 2| + C 

89.	 –7x – 32 ln|x – 5| + C 
90.	 2x – ln|2 – x| + C 

Page 19
91.	 ln|6x + 3| + C 
92.	 3 ln|x – 2| + C 
93.	 2 ln|x2 + 1| + C 

94.	  
A
3  ln|3x – 1| + C

95.	 ln|x2 – 3x + 1| + C 
96.	 2ln|x2 + x – 2| + C
97.	 2ln|x2 – 1| + C
98.	 ln|e2x – 5| + C

Page 25

125.	(2x + 3)6 + C

126.	
– 6

(x − 2)5
 + C

127.	 	3(x – 6)4 + C

128.		
– 8

(x + 2)3
 + C  OR

	 –8 (x + 2)–3 + C

Page 26

129.	 5(x + 3) – 9 ln|x + 3| + C

130.	
2
5
(x + 2)5/2 – 4

3
(x + 2)3/2 +C

131.	 1
2

(x2 + 4)6 + C

132.	 8 x + 2 + C

133.	 1
7

(x + 5)7 – 5
3

(x + 5)6 + 5(x + 5)5 	
			                + C

134.	 ∫	(2u + 5)u5  du

	 = ∫	2u6 + 5u5   du

	 = 2
7

(x – 2)7 + 5
6

(x – 2)6 + C    

135.	 ln|x – 3|– 3
x − 3

 + C

136.	
–1

2(x2 + 4x + 5)2  + C

Page 27

137.	 25(x + 2)6/5 + C

138.	 1
8

(x2 + 5)4 + C

139.	 	ln|ln|x|| + C

140.	 ln|ex – 2| + C

141.	 1
3

(2x – 1)3/2 + (2x – 1)1/2 + C 

	 =1
3
(2x −1)3  + 2x −1 + C

142.	  1
3
(2x −1)3  + 2x −1 + C

	 = 2
3

(x + 1) 2x −1 + C

143.	 3ex
2
 + C

144.	  3ex
2
 + C
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